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ABSTRACT

Annotating data is often a very expensive, yet an indispensable task
for modern-day supervised deep learning (DL), requiring interaction
between experts and systems. In this paper, we propose a mixed-
initiative workflow and present a specific application, targeted to-
wards both the annotators and the machine learning (ML) experts,
aiming to bridge the gap between two different stakeholders. With
our work, we contribute a dashboard utilizing Active Learning (AL)
for annotators–domain experts in medicine–and ML experts contain-
ing the complete labeling workflow of relations between entities in
biomedical sentences. Our dashboard offers various AL strategies,
ML algorithms as well as dimensionality reduction techniques to ex-
plore samples and select items that have the biggest impact on the
generalization performance after labeling and retraining, while pro-
viding a modular design for different use case scenarios.

Keywords: Mixed-initiative systems, active learning, visual analyt-
ics, biomedical text annotation

1 INTRODUCTION

Understanding the relations between genes, diseases, and chemicals,
has been a key goal of modern-day biomedical research [19]. While
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many of these relationships, e.g., the genetic cause of a disease or
how a chemical may regulate a particular gene, have been captured
in structured resources, curation of this knowledge often lags behind
the rate at which the scientific community produces it [3]. Building
automated text mining systems to extract such knowledge from the
biomedical literature is one solution to address this lag in knowledge
curation. The development of such systems requires the coordina-
tion of domain experts trained in the biomedical sciences to label
data for training computational models, and machine learning engi-
neers capable of building systems based on the training data to auto-
matically identify entities and relations between them in biomedical
text. The work described here facilitates the collaboration of these
different stakeholders by providing a generalizable platform that in-
creases domain expert annotation efficiency by prioritizing the anno-
tation of sentences in the data set.

Recent advancements in natural language processing (NLP) have
enabled the successful extraction of valuable lexical and semantic
relations in documents [35]. Human-comparable performances in
these tasks can be obtained by utilizing word embeddings, sentence
embeddings, or contextual representations [28], which are extracted
using pre-trained language models such as BERT [10]. Transfer
learning (TL) strategies often use a fine-tuning stage to boost perfor-
mance [10], requiring labeled samples for the downstream tasks.

Obtaining numerous labeled samples is challenging and
task/domain-specific. Active learning [20] is an emerging field that
aims to decrease the number of labeled samples that is required to
achieve the necessary model performance. Therefore, by employ-
ing NLP, AL, and ML, we enhance our biomedical annotation dash-
board with intelligent tools, to ease the labeling process of domain
experts and to increase the performance of the relation classifier as
much as possible with as few samples required to be labeled as pos-
sible. Our dashboard is designed to support annotators and machine



learning engineers, with two user interfaces supporting data explo-
ration and downstream functionality such as model re-training and
performance visualization as the labeling continues.

With the interactive design in mind, our dashboard provides an
out-of-the-box labeling tool for understanding biomedical text data
and the dynamics of training the base machine learning algorithm
powered by active learning. Our main contribution with this paper is
a modular workflow, deploying AL, ML, and dimensionality reduc-
tion techniques, while addressing the needs of multiple stakeholders,
for simultaneous and concurrent intelligence augmentation and per-
formance evaluation. This way, we tighten the loop between data
annotation and model verification.

In the following subsections, we present the development of our
smart biomedical labeling dashboard in terms of visualization design
choices and the mechanisms behind it.

2 LITERATURE REVIEW

The dashboard and the workflow we propose contain three concepts
that are investigated frequently in the literature, namely, annotation,
textual data projection and active learning.
Annotation – Interactive machine learning has enabled new possi-
bilities for creating labeling platforms. Regarding textual annota-
tion tasks, various NLP-based solutions have been developed in re-
cent years. Both BRAT [33] and VIANA [32] for instance, let users
annotate (named entities or parts-of-speech tags) by directly click-
ing on words or dragging over various textual parts. Some plat-
forms make suggestions on the parts to be labeled, e.g., with tem-
poral events (e.g., TimeLineCurator [16]) or general entity extrac-
tion (e.g., Anafora [9]), use gamification to engage the users (e.g.,
QuestionComb [30]), or pre-select a label for the user (e.g., GATE
Teamware [6]). As our task specifically focuses on labeling the rela-
tions between entities, we highlight the entities during selection, but
follow a labeling functionality similar to BRAT and VIANA. We do
not suggest any annotations to the user as this could lead to selec-
tion bias [14, 31].
Active Learning and Interaction – In order to take advantage
of the AL benefits, there have also been advances to integrate AL
to interactive labeling dashboards. One of them is MONAI Label
[11] a platform using a combination of AL and ML to annotate 3D
biomedical images. An established closed source example is Prodigy
[13] using AL for interactive annotation tasks of different types of
data. Another example is PAL [31], an extension to BRAT which
adds active learning and pre-annotation on the input data but without
showing any performance measures nor being directly applied to
biomedical data. AL and interactivity using lower-dimensional
representations of samples have been implemented in literature [4,
5]. Such tools allow the users to label by automatically selecting
the sample with the highest acquisition value and demonstrating
different aspects such as Voronoi tessellations [4], convex hulls,
color maps, or butterfly plots [5] on the projected two-dimensional
space, as an indicator of neighborhood structures.
Projecting Textual Data – Projecting textual data on a lower-
dimensional space for exploration and refinement has been applied
frequently in the visual analytics literature. Semantic Concept
Spaces [12] provide projections of the word embeddings for topic
model refinement on a two-dimensional space. DocuCompass [18]
framework offers the user to see documents on a two-dimensional
space with a lens feature to investigate documents’ characteristic la-
bels while preserving distance measures of the documents with re-
spect to similarity measures. For hierarchical topic exploration, Top-
icLens was proposed [22], offering a lens feature to recompute the
topic model in a finer-grained structure for user selection, color cod-
ing, and clustering based on similarities of the identified topics in
large documents. For visualization of semantic relations between
word embeddings, Word Embedding Visual Explorer [25] was built,
presenting global and pairwise projections on lower dimensions.

3 USER INTERFACE AND WORKFLOW DESIGN

In order to cover the workflow of biomedical relation annotation,
our dashboard is divided into two modes: (1) labeling mode and (2)
discovery mode. These two modes have common components that
are always visible and different components that are not visible in
the other mode. The different components are developed to separate
the ML expert view and domain expert view of our dashboard from
each other to make the interaction as efficient as possible. In their
individual subsections, we explain the different components and de-
lineate the common components in the last subsection. An overview
of the workflow from the dashboard can be seen in Figure 1.

3.1 Labeling Mode
In the labeling mode, annotators interactively label the sentences that
have the highest acquisition values. The dashboard welcomes the
user with a sorted Acquisition Value plot in Figure 2 and a section as
seen in Figure 3 that directly refers the domain experts to the sample
with the highest acquisition value, calculated using the selected ML
model and AL strategy. We use vertical lollipop plots to emphasize
the differences in acquisition values among the best 50 samples (see
Figure 2). A “Next” button is also included, to continue labeling
the next sample with the highest acquisition value. Furthermore, the
user can interact with the points by hovering the mouse over them to
see the corresponding sentence inside a tooltip.

Figure 2: Acquisition Value plot example from the dashboard.

In the sentence labeling section shown in Figure 3, the pre-
extracted entities are bolded and underlined, and the annotator can
directly click on the text to declare one of the entities for labeling.
Once two entities are chosen, a pop-up window asks the annotator
to assign the relation label for the chosen entity pair. Afterward,
the chosen relation label is automatically recorded in the backend
database and the next sample is displayed.

3.2 Discovery Mode
Our discovery mode is for machine learning experts to learn about
model dynamics and performance as the labeling process continues.
Dimensionality Reduction Plot – In the discovery mode, the ma-
chine learning expert is first presented with data exploration vi-
sualizations. The labeled sentences’ embeddings are on a two-
dimensional interactive zoomable plot, projected by the selected di-
mensionality reduction technique. The data point is linked to its
sentence, and a tooltip shows the corresponding sentence when the
mouse hovers. The selected sentence is highlighted in the plot. An
example of the t-SNE reduction plot is shown in Figure 4a.
Sentence – On the right a table, that is displayed in the sentence
panel, shows example sentences, their labels, and indices, which the
users can use to discover the sentences in the dataset by using the
‘Next’ and ‘Previous’ buttons. Our dashboard keeps which sentence
is selected, and the sentences can be selected either from the plots
or from the table. Below the table, the user can find the selected

Figure 3: Entity selection panel.



(a) t-SNE exploration (b) t-SNE + Voronoi polygons on the test set (c) Accuracy plot against random labeling

Figure 4: Panels from the discovery mode. Machine learning experts can explore the data set through various dimension reduction techniques,
see their decision boundaries in the Voronoi tessellations, and check the performance by simulating labeling rounds.

sentence and highlight its entities by hovering over the sentence.
Understanding the Classifiers – Furthermore, in the discovery
mode, users can see and interact with the Voronoi tessellation of the
test set samples projected on a 2-dimensional space. The polygons
are filled with respect to three different modes, such that the Voronoi
panel shows (0) actual labels, (1) predicted labels, or (2) predictions
compared against the ground truth, based on user selection (see
Figure 4b for the t-SNE Voronoi of mode 0). Furthermore, the
user can visualize how the decision boundaries of the classifiers
based on the Voronoi tessellation changes with additional labeled
samples by going over different rounds of labeling that come from
the simulations ran in the backend. By visualizing the different
rounds, the user can observe changes in the decision boundaries and,
by hovering over the point, learn which sentence it corresponded to.
Comparing Strategies – The performance of the selected model
and the AL strategy is displayed on the right half of the panel, where
the ML expert can compare AL strategy performance with random
labeling based on different rounds of labeling and retraining. In
Figure 4c, the accuracy of the Max-Entropy algorithm for SVM
classifiers is displayed against random labeling over 40 simulation
rounds. For further details on the simulations and performances, see
Section 5.

3.3 Common Components in All Modes

The user sees an interactive tutorial [2] when they enter the page
for the first time, which can be reopened if desired. The tutorial
contains GIFs to show users how to interact with the components,
also highlighting the corresponding component. The icons showing
the classifiers are interactive, their sizes enlarge on hover, and the
user can choose the desired selection by clicking on them, as well as
from the drawer by clicking on the menu icon on the top right.

The glossary component includes intuitive explanations for the
interactive components regardless of the mode, for both the ML ex-
pert and the domain expert to read. Figure 5 shows a sample selec-
tion box and the query buttons located in the drawer. Here, multi-
ple domain experts and machine learning engineers can synchronize
on labeling status. They can see how many data points have been
labeled since the model was last retrained, start a retraining process
with the addition of the new labels, and display the predicted class
probabilities for the selected sample.

The whole dashboard is designed to be full-screen scrollable
(using fullPage.js [1]) to ensure that the user focuses on the desired
panels, especially in the discovery mode.

4 BIOMEDICAL TEXT DATA AND ML METHODS

In the following section, we explain the dataset and the methods
used in our current implementation. However, the workflow of the
dashboard is designed in a way that it could be enhanced with further
methods or applied to other datasets without major changes to the
user interface described above.

(a) classifier choice (b) query buttons

Figure 5: Sample options from the common drawer.

Figure 6: Sample sentence, before and after entities are replaced
with placeholders.

4.1 Dataset, Preprocessing, and Feature Engineering

Dataset – Our dataset consists of 12,128 samples from PubMed ab-
stracts or PubMed Central articles. Each sample contains a sentence,
an entity pair from the sentence, and its relation label. The possible
biomedical ontologies that form the entities are chemicals, diseases,
or genes. There are 5 possible relation labels: (0) no relation, (1)
treats, (2) causes, (3) positively regulates, and (4) negatively regu-
lates. Entities and labels were mined from in-house annotation ef-
forts as well as the ChemProt [23] and GeneReg [8] corpora.
Preprocessing – Entities in the sample sentences are extracted auto-
matically. Sentences can have more than one entity pair and labels
are specific to a given entity pair, which means that one extracted sen-
tence from an article can create more than one data point. To simu-
late a deployment scenario, we split the dataset in a stratified fashion,
so that the class distributions in “labeled” and “unlabeled” sets were
preserved. We treated 6,066 of the samples as unlabeled and 6,062
as labeled, trained the models on the labeled set, conducted the sim-
ulations on the test set, formed by 1,000 samples randomly selected
from the “unlabeled” set, and visualize the first 500 in the dashboard.
Feature Engineering – Using the original dataset, we create the fea-
ture vectors by replacing the pre-extracted entities with the place-
holder “ENTITY” as in Figure 6. We then propagate these sentences
with placeholders through BlueBERT, a pre-trained BERT model
over PubMed abstracts and articles, which is precisely our data
source [28], to obtain 768-dimensional vectors. Our main goal while
using placeholders instead of exact entity words is to generalize for
the contextual meaning in the sentences in an entity agnostic fashion.
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Figure 7: Simulations comparing AL strategies against random sample selection.

4.2 Descriptive Overview and Dimensionality Reduction
To visualize the BlueBERT [28] embeddings of the labeled (already
labeled and newly labeled) sentences in a 2-dimensional vector
space, we offer three different dimensionality reduction algorithms
to the user to select. The selected algorithms are Principal Com-
ponent Analysis (PCA) [15], t-Distributed Stochastic Neighbor
Embedding (t-SNE) [34], and Uniform Manifold Approximation
and Projection (UMAP) [27] which helps the user understand dif-
ferent properties of the original high dimensional vector space.

4.3 ML Classifiers and AL Strategies
Base Classifiers – We want to keep the dashboard as interactive as
possible while also maintaining model performance. To this extent,
also acknowledging that our training dataset is small, we try to avoid
deep models with many parameters. Instead, we utilize classifiers
that can successfully identify uncertainty. Trying to satisfy all con-
straints, we choose Support Vector Machines (SVM) [17], Ran-
dom Forest Classifiers (RFC) [7], Neural Networks (NN) [26],
and Gradient Boosting Classifiers (GBC) [21] as our base classi-
fiers. These classifiers are used in our dashboard to infer prediction
probabilities of the unlabeled sentences to calculate acquisition val-
ues and can be selectively changed by the user.
AL Strategies – In modern active learning, base classifiers are
used to identify the uncertainty in unlabeled sentences; then differ-
ent strategies are used to compute and assign “acquisition values”
to the unlabeled sentences, that are considered to indicate which
samples to label first [20]. We choose three of the most widely
used techniques to assign acquisition values to the unlabeled sen-
tences [24], namely Uncertainty Sampling, Margin Sampling, and
Max-Entropy Sampling. We also allow stakeholders to select the
desired strategy to calculate the acquisition value for the unlabeled
samples in our dashboard.

5 USE CASE AND RESULTS

Our dashboard finds direct application in tasks that need labeling of
biomedical relations in text. The combination of ML experts and do-
main experts in our workflow thereby allows for more fine-tuning
and quality control. In order to compare the Active Learning strate-
gies and classifiers, we ran labeling and retraining simulations. We
decided on a 200-round simulation where each round includes 25
additional samples added to the labeled dataset based on which strat-
egy is employed. We ran every classifier and AL strategy combina-
tion and tested on a leave-out set with 1,000 samples with ground
truth labels. The simulation plots can be seen in Figure 7.

The figures demonstrate the insignificance of performance differ-
ences. The imbalance in the dataset forces most of the models to al-
ways predict the majority class, even though we have utilized class
weighting and different oversampling methods to make up for the
imbalance. We also tried binary classification, comparing class 0
(no relation exists for the selected entity pair) against other classes,
which did not demonstrate significant differences between random
sampling and AL either. To satisfy the expectations, we kept the
multi-class scenario in our dashboard, as well as the simulations.

Moreover, the results, especially observed with ensemble clas-

sifiers, are unexpected. Gradient Boosting performance decreases
with more samples being labeled, whereas Random Forest does not
demonstrate any changes. Support Vector Machine is the most sta-
ble, with all AL strategies surpassing random labeling with a small
margin after round 125, while showing an upwards trend, which is
expected as the classifier should theoretically generalize better with
increased training set size. Neural Network accuracy scores against
rounds are observed to be too noisy to interpret, with AL strategies
showing better performance than random sampling.

Moreover, AL guarantees have been proven [29] for the scenario
where the classifiers are re-calibrated using one sample each round.
As we believed that this would hinder the interactivity of the dash-
board and is also unrealistic to use with larger base classifiers in the
future, we selected the top 25 samples each round before retraining,
which might also constrain the simulation performance.

6 CONCLUSION

In this work we describe an annotation dashboard for sentences
from the biomedical literature. The dashboard supports the user
with two modes designed for domain experts and ML experts. It
offers a wide variety of AL techniques and ML classifiers and allows
the users to select different dimensionality-reduction algorithms to
visualize the dataset. Furthermore, users can utilize the simulation
result visualization, decision boundaries of classifiers, and retrain
the models in the backend at their discretion.

As future research, we plan to investigate different classifiers such
as Transformers and different explainability techniques. Extracting
more word-level features from the sentences may also be helpful.
Fine-tuning BlueBERT would be another direction that would also
update the visualizations obtained via dimensionality reduction. Re-
garding AL, a future direction would be to explore committee learn-
ing as an additional sampling technique, where samples are selected
based on their disagreement score calculated using several base clas-
sifiers’ soft or hard voting results. To strengthen the communica-
tion between the domain experts and machine learning engineers,
we would also like to create a ”run simulation” button, which with a
click, runs all simulations on newly added data.

In terms of the usability of our dashboard, we would like to con-
duct experiments with annotators and ML experts. Based on their
feedback, we plan to enhance our dashboard with additional tools,
such as flagging options for users to indicate wrong entity extrac-
tion. Another additional future direction can be the incorporation
of an RL agent to automatically select the best performing AL/ML
combination for sample selection.
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P. Mehta, W. Li, H. R. Roth, T. Vercauteren, D. Xu, P. Dogra,
S. Ourselin, A. Feng, and M. J. Cardoso. Monai label: A framework
for ai-assisted interactive labeling of 3d medical images, 2022. doi: 10.
48550/ARXIV.2203.12362

[12] M. El-Assady, R. Kehlbeck, C. Collins, D. Keim, and O. Deussen.
Semantic concept spaces: Guided topic model refinement using word-
embedding projections. 2019. doi: 10.48550/ARXIV.1908.00475

[13] Explosion. Prodigy. Retrieved from https://prodi.gy, 2022.
[14] K. Fort and B. Sagot. Influence of pre-annotation on pos-tagged corpus

development. In The Fourth ACL Linguistic Annotation Workshop, pp.
56–63, July 2010.

[15] K. P. F.R.S. Liii. on lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559–572, 1901. doi: 10.1080/
14786440109462720

[16] J. Fulda, M. Brehmer, and T. Munzner. Timelinecurator: Interactive
authoring of visual timelines from unstructured text. IEEE Trans. on
Visualization and Computer Graphics, 22(1):300–309, 2016. doi: 10.
1109/TVCG.2015.2467531

[17] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support
vector machines. vol. 13, pp. 18–28. 1998. doi: 10.1109/5254.708428

[18] F. Heimerl, M. John, Q. Han, S. Koch, and T. Ertl. Docucompass:
Effective exploration of document landscapes. pp. 11–20, 2016. doi:
10.1109/VAST.2016.7883507

[19] M. Jackson, L. Marks, G. May, and J. Wilson. The genetic basis of
disease. Essays In Biochemistry, 62:643–723, 12 2018. doi: 10.1042/
EBC20170053

[20] P. F. Jacobs, G. Maillette de Buy Wenniger, M. Wiering, and
L. Schomaker. Active learning for reducing labeling effort in text clas-
sification tasks. In L. A. Leiva, C. Pruski, R. Markovich, A. Najjar, and
C. Schommer, eds., Artificial Intelligence and Machine Learning, pp.
3–29. Springer Int. Publishing, 2022.

[21] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and

T.-Y. Liu. Lightgbm: A highly efficient gradient boosting decision
tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds., Advances in Neural Information
Processing Systems, vol. 30. Curran Associates, Inc., 2017.

[22] M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist. Topiclens:
Efficient multi-level visual topic exploration of large-scale document
collections. IEEE Trans. on Visualization and Computer Graphics,
23(1):151–160, 2017. doi: 10.1109/TVCG.2016.2598445

[23] M. Krallinger, O. Rabal, S. A. Akhondi, M. P. Pérez, J. Santamarı́a, G. P.
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